Part Number Hot Search : 
MUR440 AD974AN 30201 GAANU TK6A60D 253LM C4370 01110
Product Description
Full Text Search
 

To Download MW7IC2220NR109 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  mw7ic2220nr1 mw7ic2220gnr1 mw7ic2220nbr1 1 rf device data freescale semiconductor rf ldmos wideband integrated power amplifiers the mw7ic2220n wideband integrated circuit is designed with on - chip matching that makes it usable from 2000 to 2200 mhz. this multi - stage structure is rated for 24 to 32 volt operation and covers all typical cellular base station modulation formats including td - scdma. ? typical single - carrier w - cdma performance: v dd = 28 volts, i dq1 = 80 ma, i dq2 = 300 ma, p out = 2 watts avg., full frequency band, channel bandwidth = 3.84 mhz, input signal par = 7.5 db @ 0.01% probability on ccdf. power gain ? 31 db power added efficiency ? 13% acpr @ 5 mhz offset ? - 50 dbc in 3.84 mhz bandwidth ? capable of handling 5:1 vswr, @ 28 vdc, 2140 mhz, 20 watts cw output power ? stable into a 5:1 vswr. all spurs below - 60 dbc @ 100 mw to 5 watts cw p out . ? typical p out @ 1 db compression point  20 watts cw features ? characterized with series equivalent large - signal impedance parameters and common source s - parameters ? on - chip matching (50 ohm input, dc blocked, >3 ohm output) ? integrated quiescent current temperature compensation with enable/disable function (1) ? integrated esd protection ? 225 c capable plastic package ? rohs compliant ? in tape and reel. r1 suffix = 500 units per 44 mm, 13 inch reel. figure 1. functional block diagram quiescent current temperature compensation (1) v ds1 rf in v gs1 rf out /v ds2 v gs2 v ds1 (top view) gnd nc rf in v gs1 gnd v ds1 rf out /v ds2 gnd v gs2 v ds1 gnd 2 3 4 5 6 7 8 16 15 14 13 12 9 10 11 1 nc nc nc nc nc figure 2. pin connections note: exposed backside of the package is the source terminal for the transistors. 1. refer to an1977, quiescent current thermal tracking circuit in the rf integrated circuit family and to an1987, quiescent current control for the rf integrated circuit device family . go to http://www .freescale.com/rf. select documentation/application notes - an1977 or an1987. document number: mw7ic2220n rev. 1, 1/2009 freescale semiconductor technical data mw7ic2220nr1 mw7ic2220gnr1 mw7ic2220nbr1 2110 - 2170 mhz, 2 w avg., 28 v single w - cdma rf ldmos wideband integrated power amplifiers case 1886 - 01 to-270 wb-16 plastic mw7ic2220nr1 case 1887 - 01 to - 270 wb - 16 gull plastic mw7ic2220gnr1 case 1329 - 09 to-272 wb-16 plastic mw7ic2220nbr1 ? freescale semiconductor, inc., 2008 - 2009. all rights reserved.
2 rf device data freescale semiconductor mw7ic2220nr1 mw7ic2220gnr1 mw7ic2220nbr1 table 1. maximum ratings rating symbol value unit drain- source voltage v dss - 0.5, +65 vdc gate - source voltage v gs - 0.5, +5 vdc operating voltage v dd 32, +0 vdc storage temperature range t stg - 65 to +150 c case operating temperature t c 150 c operating junction temperature (1,2) t j 225 c input power p in 20 dbm table 2. thermal characteristics characteristic symbol value (2,3) unit thermal resistance, junction to case 2 w avg. (p out = 2 w avg., case temperature = 78 c) stage 1, 28 vdc, i dq1 = 80 ma stage 2, 28 vdc, i dq2 = 300 ma 20 w avg. (p out = 20 w avg., case temperature = 82 c) stage 1, 28 vdc, i dq1 = 80 ma stage 2, 28 vdc, i dq2 = 300 ma r jc 4.3 1.5 4.3 1.25 c/w table 3. esd protection characteristics test methodology class human body model (per jesd22 - a114) 1b (minimum) machine model (per eia/jesd22 - a115) a (minimum) charge device model (per jesd22 - c101) iii (minimum) table 4. moisture sensitivity level test methodology rating package peak temperature unit per jesd22 - a113, ipc/jedec j - std - 020 3 260 c table 5. electrical characteristics (t c = 25 c unless otherwise noted) characteristic symbol min typ max unit stage 1 ? off characteristics zero gate voltage drain leakage current (v ds = 65 vdc, v gs = 0 vdc) i dss ? ? 10 adc zero gate voltage drain leakage current (v ds = 28 vdc, v gs = 0 vdc) i dss ? ? 1 adc gate - source leakage current (v gs = 5 vdc, v ds = 0 vdc) i gss ? ? 1 adc stage 1 ? on characteristics gate threshold voltage (v ds = 10 vdc, i d = 23 adc) v gs(th) 1.2 2 2.7 vdc gate quiescent voltage (v ds = 28 vdc, i dq1 = 80 madc) v gs(q) ? 2.8 ? vdc fixture gate quiescent voltage (v dd = 28 vdc, i dq1 = 80 madc, measured in functional test) v gg(q) 9.5 12.2 16.5 vdc 1. continuous use at maximum temperature will affect mttf. 2. mttf calculator available at http://www.freescale.com/rf . select software & tools/development tools/calculators to access mttf calculators by product. 3. refer to an1955, thermal measurement methodology of rf power amplifiers. go to http://www.freescale.com/rf . select documentation/application notes - an1955. (continued)
mw7ic2220nr1 mw7ic2220gnr1 mw7ic2220nbr1 3 rf device data freescale semiconductor table 5. electrical characteristics (t c = 25 c unless otherwise noted) (continued) characteristic symbol min typ max unit stage 2 ? off characteristics zero gate voltage drain leakage current (v ds = 65 vdc, v gs = 0 vdc) i dss ? ? 10 adc zero gate voltage drain leakage current (v ds = 28 vdc, v gs = 0 vdc) i dss ? ? 1 adc gate - source leakage current (v gs = 5 vdc, v ds = 0 vdc) i gss ? ? 1 adc stage 2 ? on characteristics gate threshold voltage (v ds = 10 vdc, i d = 150 adc) v gs(th) 1.2 2 2.7 vdc gate quiescent voltage (v ds = 28 vdc, i dq2 = 300 madc) v gs(q) ? 2.7 ? vdc fixture gate quiescent voltage (v dd = 28 vdc, i dq2 = 300 madc, measured in functional test) v gg(q) 7 8 12.5 vdc drain- source on - voltage (v gs = 10 vdc, i d = 1 adc) v ds(on) 0.2 0.39 1.2 vdc stage 2 ? dynamic characteristics (1) output capacitance (v ds = 28 vdc 30 mv(rms)ac @ 1 mhz, v gs = 0 vdc) c oss ? 205 ? pf functional tests (in freescale wideband 2110 - 2170 mhz test fixture, 50 ohm system) v dd = 28 vdc, i dq1 = 80 ma, i dq2 = 300 ma, p out = 2 w avg., f1 = 2112.5 mhz and f2 = 2167.5 mhz, single - carrier w - cdma, 3gpp test model 1, 64 dpch, 50% clipping, input signal par = 7.5 db @ 0.01% probability on ccdf. acpr measured in 3.84 mhz channel bandwidth @ 5 mhz offset. power gain g ps 29 31 34 db power added efficiency pae 11 13 ? % adjacent channel power ratio acpr ? -50 -47 dbc input return loss irl ? -14 -12 db typical performances (in freescale test fixture, 50 ohm system) v dd = 28 vdc, i dq1 = 80 ma, i dq2 = 300 ma, 2110 - 2170 mhz p out @ 1 db compression point, cw p1db ? 20 ? w imd symmetry @ 18 w pep, p out where imd third order intermodulation  30 dbc (delta imd third order intermodulation between upper and lower sidebands > 2 db) imd sym ? 40 ? mhz vbw resonance point (imd third order intermodulation inflection point) vbw res ? 70 ? mhz gain flatness in 60 mhz bandwidth @ p out = 2 w avg. g f ? 0.6 ? db average deviation from linear phase in 60 mhz bandwidth @ p out = 20 w cw ? 1.2 ? average group delay @ p out = 20 w cw, f = 2140 mhz delay ? 2.5 ? ns part - to - part insertion phase variation @ p out = 20 w cw, f = 2140 mhz, six sigma window ? ? 15 ? gain variation over temperature (-30 c to +85 c) g ? 0.036 ? db/ c output power variation over temperature (-30 c to +85 c) p1db ? 0.003 ? dbm/ c 1. part internally matched both on input and output.
4 rf device data freescale semiconductor mw7ic2220nr1 mw7ic2220gnr1 mw7ic2220nbr1 z8 0.263 x 0.123 microstrip z9 0.125 x 0.123 microstrip z10 0.280 x 0.083 microstrip z11 0.373 x 0.083 microstrip z12 0.364 x 0.083 microstrip z13, z14 0.564 x 0.083 microstrip pcb arlon cuclad 250gx - 0300- 55 - 22 , 0.030 , r = 2.55 z1 0.090 x 0.083 microstrip z2 2.107 x 0.083 microstrip z3 0.016 x 0.083 x 0.055 taper z4 0.106 x 0.055 microstrip z5 0.570 x 0.322 microstrip z6 0.204 x 0.322 microstrip z7 0.050 x 0.322 microstrip figure 3. mw7ic2220nr1(gnr1)(nbr1) test circuit schematic r1 z2 rf input v gg1 z5 rf output c15 c16 v dd2 1 2 3 4 5 6 7 8 14 13 12 11 10 9 15 16 nc nc nc dut z3 c5 c10 v dd1 z13 quiescent current temperature compensation z1 nc z14 z6 z7 z11 c14 c9 c2 v gg2 c4 nc nc c7 c8 z8 z10 z9 c11 c17 c18 c19 c20 c26 + c21 c22 c23 c24 c25 z4 c1 r2 c3 c12 c13 z12 c6 table 6. mw7ic2220nr1(gnr1)(nbr1) test circuit component designations and values part description part number manufacturer c1 0.1 pf chip capacitor atc100b0r1jt500xt atc c2, c3 8.2 pf chip capacitors atc100b8r2bt500xt atc c4 4.7 f, 50 v chip capacitor c4532x7r1h475kt tdk c5, c6 0.4 pf chip capacitors atc100b0r4jt500xt atc c7, c9 10 f, 50 v chip capacitors c3225y5v1h106zt tdk c8, c10 5.6 pf chip capacitors atc100b5r6jt500xt atc c11, c12 0.3 pf chip capacitors atc100b0r3jt500xt atc c13 0.8 pf chip capacitor atc100b0r8jt500xt atc c14 1.1 pf chip capacitor atc100b1r1jt500xt atc c15, c16, c21 9.1 pf chip capacitors atc100b9r1jt500xt atc c17, c22 0.1 f, 250 v chip capacitors c3216x7r2e104kt tdk c18, c23 6.8 f, 50 v chip capacitors c4532x7r1h685kt tdk c19, c24 4.7 f, 50 v chip capacitors c4532x7r1h475kt tdk c20, c25 10 f, 50 v chip capacitors c3225y5v1h106zt tdk c26 470 f, 63 v electrolytic capacitor 477kxm063m illinois r1, r2 10 k , 1/4 w chip resistors crcw12061002fkea vishay
mw7ic2220nr1 mw7ic2220gnr1 mw7ic2220nbr1 5 rf device data freescale semiconductor figure 4. mw7ic2220nr1(gnr1)(nbr1) test circuit component layout mw7ic2220n rev. 0 cut out area c9 v gg1 c10 c8 c7 c6 c4 r2 c3 c2 r1 c21 c22 c23 c24 c25 c12 c11 c13 c14 c15 c18 c19 c20 c16 c17 c26 c5 c1
6 rf device data freescale semiconductor mw7ic2220nr1 mw7ic2220gnr1 mw7ic2220nbr1 typical characteristics irl, input return loss (db) 2060 irl g ps acpr f, frequency (mhz) figure 5. output peak - to - average ratio compression (parc) broadband performance @ p out = 2 watts avg. ?18 ?14 ?15 ?16 ?17 28.5 32.5 32.1 31.7 ?54 14 13 12 11 ?44 ?46 ?48 ?50 d , drain efficiency (%) d g ps , power gain (db) 31.3 30.9 30.5 30.1 29.7 29.3 2080 2100 2120 2140 2160 2180 2200 2220 10 ?52 ?19 parc parc (db) ?0.8 0 ?0.2 ?0.4 ?0.6 ?1 acpr (dbc) v dd = 28 vdc, p out = 2 w (avg.), i dq1 = 80 ma, i dq2 = 300 ma single?carrier w?cdma, 3.84 mhz channel bandwidth input signal par = 7.5 db @ 0.01% probability on ccdf irl, input return loss (db) 2060 irl g ps acpr f, frequency (mhz) figure 6. output peak - to - average ratio compression (parc) broadband performance @ p out = 5 watts avg. ?30 ?10 ?15 ?20 ?25 28 33 32.5 32 ?42 22 21.5 21 20.5 ?37 ?38 ?39 ?40 d , drain efficiency (%) d g ps , power gain (db) 31.5 31 30.5 30 29.5 29 2080 2100 2120 2140 2160 2180 2200 2220 20 ?41 ?35 parc parc (db) ?1 ?0.2 ?0.4 ?0.6 ?0.8 ?1.2 acpr (dbc) figure 7. power gain versus output power @ i d q 1 = 80 ma 26 33 1 p out , output power (watts) cw v dd = 28 vdc i dq1 = 80 ma f = 2140 mhz 31 30 29 10 50 g ps , power gain (db) 32 i dq2 = 450 ma 150 ma 28.9 28.5 v dd = 28 vdc, p out = 5 w (avg.), i dq1 = 80 ma i dq2 = 300 ma, single?carrier w?cdma, 3.84 mhz channel bandwidth, input signal par = 7.5 db @ 0.01% probability on ccdf 28 27 375 ma 300 ma 225 ma figure 8. power gain versus output power @ i d q 2 = 300 ma 26 33 1 p out , output power (watts) cw v dd = 28 vdc i dq2 = 300 ma f = 2140 mhz 31 30 29 10 50 g ps , power gain (db) 32 i dq1 = 120 ma 28 27 100 ma 80 ma 60 ma 40 ma
mw7ic2220nr1 mw7ic2220gnr1 mw7ic2220nbr1 7 rf device data freescale semiconductor typical characteristics figure 9. intermodulation distortion products versus tone spacing two?tone spacing (mhz) 10 ?70 ?10 ?20 ?30 ?50 1 100 imd, intermodulation distortion (dbc) ?40 im3?u im3?l im5?u im5?l im7?l im7?u v dd = 28 vdc, p out = 18 w (pep), i dq1 = 80 ma i dq2 = 300 ma, two?tone measurements (f1 + f2)/2 = center frequency of 2140 mhz figure 10. output peak - to - average ratio compression (parc) versus output power 1 p out , output power (watts) ?1 ?3 ?5 4 0 ?2 ?4 output compression at 0.01% probability on ccdf (db) 2 68 14 10 40 35 30 25 20 15 d , drain efficiency (%) ?1 db = 6.36 w 10 v dd = 28 vdc, i dq1 = 80 ma, i dq2 = 300 ma, f = 2140 mhz single?carrier w?cdma, 3.84 mhz channel bandwidth input signal par = 7.5 db @ 0.01% probability on ccdf d acpr parc acpr (dbc) ?55 ?25 ?30 ?35 ?45 ?40 ?50 31.5 g ps , power gain (db) 31 30.5 30 29.5 29 28.5 g ps 1 g ps acpr p out , output power (watts) avg. figure 11. single - carrier w - cdma power gain, drain efficiency and acpr versus output power 0 45 ?60 ?15 ?20 ?25 ?30 ?35 d d , drain efficiency (%), g ps , power gain (db) 40 35 10 50 ?40 acpr (dbc) 30 25 20 t c = ?30 c 25 c 85 c ?30 c 25 c 85 c v dd = 28 vdc, i dq1 = 80 ma i dq2 = 300 ma, f = 2140 mhz single?carrier w?cdma 3.84 mhz channel bandwidth input signal par = 7.5 db @ 0.01% probability on ccdf ?60 12 ?2 db = 9.45 w ?3 db = 12.7 w 15 10 5 ?45 ?50 ?55 25 c ?30 c
8 rf device data freescale semiconductor mw7ic2220nr1 mw7ic2220gnr1 mw7ic2220nbr1 typical characteristics figure 12. broadband frequency response 6 36 1600 f, frequency (mhz) 24 18 1750 s21 (db) 30 s21 1900 2050 2200 2350 2500 2650 2800 s11 ?25 0 ?5 ?10 ?15 ?20 s11 (db) 12 v dd = 28 vdc i dq1 = 80 ma, i dq2 = 300 ma 250 10 9 90 t j , junction temperature ( c) figure 13. mttf versus junction temperature this above graph displays calculated mttf in hours when the device is operated at v dd = 28 vdc, p out = 2 w avg., and pae = 13%. mttf calculator available at http://www.freescale.com/rf. select software & tools/development tools/calculators to access mttf calculators by product. 10 8 10 7 10 5 110 130 150 170 190 mttf (hours) 210 230 2nd stage 1st stage 10 6 w - cdma test signal 10 0.0001 100 0 peak?to?average (db) figure 14. ccdf w - cdma 3gpp, test model 1, 64 dpch, 50% clipping, single - carrier test signal 10 1 0.1 0.01 0.001 24 68 probability (%) w?cdma. acpr measured in 3.84 mhz channel bandwidth @ 5 mhz offset. input signal par = 7.5 db @ 0.01% probability on ccdf input signal ?60 ?110 ?10 (db) ?20 ?30 ?40 ?50 ?70 ?80 ?90 ?100 3.84 mhz channel bw 7.2 1.8 5.4 3.6 0 ?1.8 ?3.6 ?5.4 ?9 9 f, frequency (mhz) figure 15. single - carrier w - cdma spectrum ?7.2 ?acpr in 3.84 mhz integrated bw ?acpr in 3.84 mhz integrated bw
mw7ic2220nr1 mw7ic2220gnr1 mw7ic2220nbr1 9 rf device data freescale semiconductor z o = 50 z load f = 2060 mhz f = 2220 mhz z in f = 2060 mhz f = 2220 mhz v dd = 28 vdc, i dq1 = 80 ma, i dq2 = 300 ma, p out = 2 w avg. f mhz z in  z load  2060 49.57 - j3.62 11.06 - j3.26 2080 49.49 - j3.77 10.83 - j2.96 2100 49.42 - j3.94 10.55 - j2.62 2120 49.35 - j4.12 10.30 - j2.23 2140 49.30 - j4.29 10.08 - j1.86 2160 49.25 - j4.48 9.86 - j1.51 2180 49.21 - j4.67 9.65 - j1.13 2200 49.17 - j4.86 9.45 - j0.76 2220 49.15 - j5.06 9.25 - j0.40 z in = device input impedance as measured from gate to ground. z load = test circuit impedance as measured from drain to ground. figure 16. series equivalent input and load impedance z in z load device under test output matching network
10 rf device data freescale semiconductor mw7ic2220nr1 mw7ic2220gnr1 mw7ic2220nbr1 table 7. common source s - parameters (v dd = 28 v, i dq1 = 90 ma, i dq2 = 420 ma, t c = 25 c, 50 ohm system) f s 11 s 21 s 12 s 22 f mhz |s 11 | ? |s 21 | ? |s 12 | ? |s 22 | ? 1500 0.452 134 0.356 7.81 0.001 - 108 0.979 160 1550 0.407 117 0.757 - 7.8 0.000 - 67.7 0.969 157 1600 0.354 96.5 1.430 -31 0.000 - 65.8 0.955 154 1650 0.316 85.1 2.330 - 52.1 0.001 - 27.1 0.935 151 1700 0.279 68 3.690 - 73.6 0.001 - 43.4 0.909 148 1750 0.222 49.5 5.800 - 93.3 0.002 - 21.9 0.878 143 1800 0.140 30.4 9.570 -113 0.003 - 24.8 0.833 137 1850 0.046 21.9 17.000 - 137 0.004 - 33.7 0.737 124 1900 0.094 135 33.600 - 173 0.007 - 41.8 0.476 91.7 1950 0.238 56.4 58.300 124 0.009 - 86.4 0.396 - 79.7 2000 0.254 - 29.2 47.800 59.5 0.006 -118 0.873 - 149 2050 0.241 - 84.1 34.300 22.9 0.004 - 122 0.927 - 171 2100 0.252 - 120 27.700 - 3.98 0.004 - 125 0.911 - 179 2150 0.201 - 142 23.900 - 28.2 0.003 - 128 0.891 177 2200 0.174 - 162 21.100 - 51.8 0.003 - 130 0.878 175 2250 0.148 168 18.800 - 75.9 0.003 - 131 0.872 175 2300 0.135 103 15.800 - 100 0.003 - 139 0.882 175 2350 0.197 35.4 12.600 -118 0.003 - 155 0.906 174 2400 0.244 1.73 11.100 - 132 0.002 - 156 0.919 173 2450 0.291 - 11.1 10.400 - 147 0.002 - 157 0.926 171 2500 0.340 -19 9.750 - 163 0.002 - 147 0.933 170 2550 0.391 - 26.9 9.230 - 179 0.001 - 150 0.938 169 2600 0.435 - 35.2 8.760 164 0.001 - 144 0.942 168 2650 0.475 - 44.4 8.290 146 0.001 - 137 0.945 166 2700 0.455 -46 7.050 129 0.001 - 90.2 0.950 166 2750 0.535 - 60.2 6.690 112 0.001 - 106 0.955 164 2800 0.571 - 71.2 5.980 95.1 0.001 - 103 0.955 163 2850 0.598 -82 5.170 78.5 0.002 - 96.5 0.954 162 2900 0.623 - 92.9 4.370 63.1 0.002 - 103 0.955 162 2950 0.643 - 102 3.690 48.7 0.002 - 96.2 0.954 161 3000 0.668 - 109 3.100 35.4 0.002 - 106 0.951 161 3050 0.681 -116 2.580 22.7 0.002 - 107 0.952 161 3100 0.694 - 121 2.130 11 0.002 - 87.9 0.957 160 3150 0.712 - 124 1.760 - 0.057 0.002 - 96.1 0.959 160 3200 0.724 - 127 1.440 - 10.9 0.002 - 99.6 0.959 160 3250 0.726 - 130 1.170 - 21.1 0.002 - 82.4 0.962 159 3300 0.705 - 130 0.928 - 28.7 0.003 - 66.9 0.963 159 3350 0.743 - 132 0.780 -37 0.003 - 77.2 0.959 158 3400 0.748 - 135 0.652 - 44.3 0.003 -88 0.955 157 3450 0.753 - 137 0.555 - 50.3 0.003 - 78.6 0.955 156 (continued)
mw7ic2220nr1 mw7ic2220gnr1 mw7ic2220nbr1 11 rf device data freescale semiconductor table 7. common source s - parameters (v dd = 28 v, i dq1 = 90 ma, i dq2 = 420 ma, t c = 25 c, 50 ohm system) (continued) f s 11 s 21 s 12 s 22 f mhz |s 11 | ? |s 21 | ? |s 12 | ? |s 22 | ? 3500 0.759 - 140 0.486 - 56.1 0.004 - 81.1 0.954 155 3550 0.765 - 144 0.440 - 62.4 0.004 -82 0.946 154 3600 0.770 - 148 0.401 - 69.7 0.004 - 85.9 0.941 153 3650 0.774 - 153 0.370 - 77.4 0.005 - 96.4 0.941 151 3700 0.780 - 159 0.338 - 85.1 0.006 - 94.9 0.940 150 3750 0.795 - 164 0.306 - 93.2 0.006 - 99.3 0.933 148 3800 0.810 - 170 0.273 - 101 0.008 -110 0.928 146 3850 0.821 - 175 0.239 - 107 0.008 -113 0.934 145 3900 0.839 - 178 0.207 - 111 0.008 -112 0.936 144 3950 0.855 179 0.178 -114 0.008 -117 0.927 144 4000 0.862 176 0.156 -116 0.008 - 123 0.935 144
12 rf device data freescale semiconductor mw7ic2220nr1 mw7ic2220gnr1 mw7ic2220nbr1 alternative peak tune load pull characteristics 17 p3db = 46.95 dbm (50 w) p in , input power (dbm) 46 44 18 19 actual ideal p1db = 45.93 dbm (39 w) 47 45 p out , output power (dbm) note: load pull test fixture tuned for peak p1db output power @ 28 v 48 49 50 51 16 15 14 7 13 12 11 10 9 8 v dd = 28 vdc, i dq1 = 90 ma i dq2 = 420 ma, pulsed cw 10 sec(on), 10% duty cycle f = 2110 mhz test impedances per compression level z source z load p1db 40.41 + j2.31 3.13 - j4.89 figure 17. pulsed cw output power versus input power @ 28 v @ 2110 mhz 17 p3db = 48.06 dbm (64 w) p in , input power (dbm) 46 40 18 19 actual ideal p1db = 46.99 dbm (50 w) 47 45 p out , output power (dbm) note: load pull test fixture tuned for peak p1db output power @ 28 v 48 49 50 52 16 15 14 7 13 12 v dd = 28 vdc, i dq1 = 90 ma, i dq2 = 420 ma pulsed cw, 10 sec(on), 10% duty cycle f = 2170 mhz 51 44 43 42 41 11 10 9 8 test impedances per compression level z source z load p1db 44.66 - j5.79 3.06 - j5.22 figure 18. pulsed cw output power versus input power @ 28 v @ 2170 mhz
mw7ic2220nr1 mw7ic2220gnr1 mw7ic2220nbr1 13 rf device data freescale semiconductor z7 0.388 x 0.123 microstrip z8 0.330 x 0.083 microstrip z9 0.323 x 0.083 microstrip z10 0.364 x 0.083 microstrip z11, z12 0.564 x 0.083 microstrip pcb arlon cuclad 250gx - 0300- 55 - 22 , 0.030 , r = 2.55 z1 0.090 x 0.083 microstrip z2 2.107 x 0.083 microstrip z3 0.016 x 0.083 x 0.055 taper z4 0.106 x 0.055 microstrip z5 0.570 x 0.322 microstrip z6 0.254 x 0.322 microstrip figure 19. mw7ic2220nr1(gnr1)(nbr1) test circuit schematic ? td - scdma r1 z2 rf input v gg1 z5 rf output c12 c13 v dd2 1 2 3 4 5 6 7 8 14 13 12 11 10 9 15 16 nc nc nc dut z3 c5 c10 v dd1 z11 quiescent current temperature compensation z1 nc z12 z6 z7 z9 c11 c9 c2 v gg2 c4 nc nc c7 c8 z8 c14 c15 c16 c17 c23 + c18 c19 c20 c21 c22 z4 c1 r2 c3 z10 c6 table 8. mw7ic2220nr1(gnr1)(nbr1) test circuit component designations and values ? td - scdma part description part number manufacturer c1 1 pf chip capacitor atc100b1r0jt500xt atc c2, c3 8.2 pf chip capacitors atc100b8r2bt500xt atc c4 4.7 f, 50 v chip capacitor c4532x7r1h475kt tdk c5, c6 0.4 pf chip capacitors atc100b0r4jt500xt atc c7, c9 10 f, 50 v chip capacitors c3225y5v1h106zt tdk c8, c10 5.6 pf chip capacitors atc100b5r6jt500xt atc c11 1.1 pf chip capacitor atc100b1r1jt500xt atc c12, c13, c18 9.1 pf chip capacitors atc100b9r1jt500xt atc c14, c19 0.1 f, 250 v chip capacitors c3216x7r2e104kt tdk c15, c20 6.8 f, 50 v chip capacitors c4532x7r1h685kt tdk c16, c21 4.7 f, 50 v chip capacitors c4532x7r1h475kt tdk c17, c22 10 f, 50 v chip capacitors c3225y5v1h106zt tdk c23 470 f, 63 v electrolytic capacitor 477kxm063m illinois r1, r2 11 , 1/4 w chip resistors crcw120611r0fkea vishay
14 rf device data freescale semiconductor mw7ic2220nr1 mw7ic2220gnr1 mw7ic2220nbr1 figure 20. mw7ic2220nr1(gnr1)(nbr1) test circuit component layout ? td - scdma mw7ic2220n rev. 0 cut out area c9 v gg1 c10 c8 c7 c6 c4 r2 c3 c2 r1 c18 c19 c20 c21 c22 c11 c12 c15 c16 c17 c13 c14 c23 c5 c1
mw7ic2220nr1 mw7ic2220gnr1 mw7ic2220nbr1 15 rf device data freescale semiconductor typical characteristics ?60 0 p out , output power (watts) avg. 0 30 ?10 25 ?20 15 0 10 ?50 figure 21. 6 - carrier td - scdma acpr, alt and drain efficiency versus output power alt/acpr (dbc) ?30 ?40 5 adj?u d , drain efficiency (%) d alt?u alt?l 26 48 20 adj?l 10 6?carrier td?scdma v d1 = v d2 = 28 v i dq1 = 190 ma, i dq2 = 300 ma f = 2017.5 mhz par = 7.7 db td - scdma test signal ?80 ?130 ?30 (dbm) ?40 ?50 ?60 ?70 ?90 ?100 ?110 ?120 2.5 mhz center 2.0175 ghz span 25 mhz f, frequency (mhz) figure 22. 6 - carrier td - scdma spectrum 1.28 mhz channel bw vbw = 300 khz sweep time = 200 ms rbw = 30 khz +alt2 in 1.28 mhz bw +3.2 mhz offset +alt1 in 1.28 mhz bw +1.6 mhz offset ?alt1 in 1.28 mhz bw ?1.6 mhz offset ?alt2 in 1.28 mhz bw ?3.2 mhz offset
16 rf device data freescale semiconductor mw7ic2220nr1 mw7ic2220gnr1 mw7ic2220nbr1 z o = 50 f = 1950 mhz f = 2070 mhz f = 1950 mhz f = 2070 mhz z load z in v dd = 28 vdc, i dq1 = 190 ma, i dq2 = 300 ma f mhz z in  z load  1950 50 + j0 15.539 - j10.702 1960 50 + j0 14.953 - j10.522 1970 50 + j0 14.373 - j10.327 1980 50 + j0 13.837 - j10.120 1990 50 + j0 13.294 - j9.886 2000 50 + j0 12.768 - j9.608 2010 50 + j0 12.275 - j9.298 2020 50 + j0 11.832 - j9.000 2030 50 + j0 11.422 - j8.708 2040 50 + j0 11.015 - j8.441 2050 50 + j0 10.621 - j8.175 2060 50 + j0 10.235 - j7.916 2070 50 + j0 9.868 - j7.644 z in = device input impedance as measured from gate to ground. z load = test circuit impedance as measured from drain to ground. figure 23. series equivalent input and load impedance ? td - scdma z in z load device under test output matching network
mw7ic2220nr1 mw7ic2220gnr1 mw7ic2220nbr1 17 rf device data freescale semiconductor package dimensions
18 rf device data freescale semiconductor mw7ic2220nr1 mw7ic2220gnr1 mw7ic2220nbr1
mw7ic2220nr1 mw7ic2220gnr1 mw7ic2220nbr1 19 rf device data freescale semiconductor
20 rf device data freescale semiconductor mw7ic2220nr1 mw7ic2220gnr1 mw7ic2220nbr1
mw7ic2220nr1 mw7ic2220gnr1 mw7ic2220nbr1 21 rf device data freescale semiconductor
22 rf device data freescale semiconductor mw7ic2220nr1 mw7ic2220gnr1 mw7ic2220nbr1
mw7ic2220nr1 mw7ic2220gnr1 mw7ic2220nbr1 23 rf device data freescale semiconductor
24 rf device data freescale semiconductor mw7ic2220nr1 mw7ic2220gnr1 mw7ic2220nbr1
mw7ic2220nr1 mw7ic2220gnr1 mw7ic2220nbr1 25 rf device data freescale semiconductor
26 rf device data freescale semiconductor mw7ic2220nr1 mw7ic2220gnr1 mw7ic2220nbr1 product documentation refer to the following documents to aid your design process. application notes ? an1907: solder reflow attach method for high power rf devices in plastic packages ? an1955: thermal measurement methodology of rf power amplifiers ? an1977: quiescent current thermal tracking circuit in the rf integrated circuit family ? an1987: quiescent current control for the rf integrated circuit device family ? an3263: bolt down mounting method for high power rf transistors and rfics in over - molded plastic packages engineering bulletins ? eb212: using data sheet impedances for rf ldmos devices revision history the following table summarizes revisions to this document. revision date description 0 sept. 2008 ? initial release of data sheet 1 jan. 2009 ? added fig. 13, mttf versus junction temperature, p. 8
mw7ic2220nr1 mw7ic2220gnr1 mw7ic2220nbr1 27 rf device data freescale semiconductor information in this document is provided solely to enable system and software implementers to use freescale semiconductor products. there are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. freescale semiconductor reserves the right to make changes without further notice to any products herein. freescale semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does freescale semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. ?typical? parameters that may be provided in freescale semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. all operating parameters, including ?typicals?, must be validated for each customer application by customer?s technical experts. freescale semiconductor does not convey any license under its patent rights nor the rights of others. freescale semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the freescale semiconductor product could create a situation where personal injury or death may occur. should buyer purchase or use freescale semiconductor products for any such unintended or unauthorized application, buyer shall indemnify and hold freescale semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that freescale semiconductor was negligent regarding the design or manufacture of the part. freescale  and the freescale logo are trademarks of freescale semiconductor, inc. all other product or service names are the property of their respective owners. ? freescale semiconductor, inc. 2008 - 2009. all rights reserved. how to reach us: home page: www.freescale.com web support: http://www.freescale.com/support usa/europe or locations not listed: freescale semiconductor, inc. technical information center, el516 2100 east elliot road tempe, arizona 85284 1 - 800- 521- 6274 or +1 - 480- 768- 2130 www.freescale.com/support europe, middle east, and africa: freescale halbleiter deutschland gmbh technical information center schatzbogen 7 81829 muenchen, germany +44 1296 380 456 (english) +46 8 52200080 (english) +49 89 92103 559 (german) +33 1 69 35 48 48 (french) www.freescale.com/support japan: freescale semiconductor japan ltd. headquarters arco tower 15f 1 - 8 - 1, shimo - meguro, meguro - ku, tokyo 153 - 0064 japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com asia/pacific: freescale semiconductor china ltd. exchange building 23f no. 118 jianguo road chaoyang district beijing 100022 china +86 10 5879 8000 support.asia@freescale.com for literature requests only: freescale semiconductor literature distribution center p.o. box 5405 denver, colorado 80217 1 - 800- 441- 2447 or +1 - 303- 675- 2140 fax: +1 - 303- 675- 2150 ldcforfreescalesemiconductor@hibbertgroup.com document number: mw7ic2220n rev. 1, 1/2009


▲Up To Search▲   

 
Price & Availability of MW7IC2220NR109

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X